Physicists stop and store light traveling in an optical fiber

Physicists stop and store light traveling in an optical fiber                    stoppingligh_optical                                                                                     Researchers at the Kastler Brossel Laboratory in Paris have managed to store light that propagates in an optical fiber and to release it later on demand. By causing interaction between the traveling light and a few thousand atoms in the vicinity, they demonstrated an all-fibered memory.

In the May 8th issue of the Physical Review Letters, Prof. Julien Laurat and his colleagues at Pierre and Marie Curie University report that they have devised optical memory integrated into an . The team created a way to stop and store the that usually propagates in a fiber at a speed as fast as 200,000 kilometers per second. This capability represents an important advance in , as fibers are at the heart of our worldwide telecommunication system, but also for a future quantum Internet, in which quantum information can be transported and synchronized between interconnected nodes. «This work provides a demonstration of an all-fibered memory for light. We have been able to store the light and release it later into the fiber,» says Baptiste Gouraud, a graduate student who designed this experiment and the lead author of the paper. «Previous demonstrations were based on free-space ensembles of atoms, not on a wave-guided implementation compatible with fibers used in networks.» At the core of the device is a commercial fiber with a short section elongated to 400 nanometers in in diameter where the light can efficiently interact with a cloud of laser-cooled atoms. Using the so-called electromagnetically induced transparency technique, which is well-known in free space but combined here for the first time with a fiber, the researchers slowed down the light pulse by 3000-fold and then halted it completely. The information conveyed by the laser light is transferred to the atoms in the form of a collective excitation, a large quantum superposition. Around 2000 cesium very close to the fiber were involved in the process. Later, after a programmable period, the light was released into the fiber, reconstituting the initial encoded information that can once again travel. Storage times of up to 5 microseconds were demonstrated, corresponding to a traveling distance of 1 km if the light had not been halted. The experiment by the Paris team also showed that even light pulses containing only one photon can be stored, with a very large signal-to-noise ratio. This feature will enable the use of this device as a quantum memory, an essential ingredient for the creation of future quantum networks.

Read more at: http://phys.org/news/2015-05-physicists-optical-fiber.html#jCp

The cosmic evolution of galaxies

The cosmic evolution of galaxies                                                                                      thecosmicevo_galaxies                                                                         Our knowledge of the big bang has increased dramatically in the past decade, as satellites and ground-based studies of the cosmic microwave background have refined parameters associated with the very early universe, achieving amazing precisions (though not necessarily accuracies) of a few percent. Unfortunately, our knowledge of what happened after that — from those first few hundred thousand years until today, 13.7 billion years later — is very much a work-in-progress. We know that galaxies and their stars formed out of the cooling, filamentary network of matter from that early era. They re-ionized the hydrogen gas, and then continued to evolve, and collide with one another as the universe steadily expanded. Distant galaxies are faint and hard to detect, however, and although observations have made excellent progress in piecing together the story line, astronomers have turned to theory and computer simulations to try to complete the picture.

There are three main theoretical approaches to study the cosmic frequency of galaxy mergers, which differ in how they model . The first approach does not attempt to model from first principles, and instead «paints» galaxies onto the dark matter environment (they are called «halos») according to constraints set by observations. The second approach models galaxy formation by means of simple mathematical recipes, again using as the backbone of the model. The third method, hydrodynamic simulations, attempts to model everything (, gas and stars) self-consistently, a task that until recently had been computationally too difficult.

CfA astronomers Vicente Rodriguez-Gomez, Shy Genel, Annalisa Pillepich, Dylan Nelson, and Lars Hernquist and their colleagues have developed a new theoretical framework for calculating the frequency of in the Illustris Project, a cosmological hydrodynamic simulation which models the formation of galaxies in cosmic volumes about three hundred million light-years in size,

huge enough to replicate many known properties of galaxies and clusters both locally and at earlier epochs. The large volume, the self-consistent treatment of normal matter, and the realistic galaxy formation model used, allows the Illustris simulation to provide an unprecedented and precise study of mergers over cosmic time.

The astronomers find clear evidence for steadily decreasing galaxy merger rates (the merger frequency three billion years after the big bang was about fifteen times higher than it is today), and they clarify the nature of mergers, for example, finding the most useful definition for the mass ratio of the merging galaxies and constraining the epoch of mass infall during a collision. They report some sharp differences between their results and those predicted by some other popular theories, as well as some ambiguities in the (still imprecise) observed datasets. Their important research marks the start of a more detailed series of investigations into the cosmic evolution of galaxies.

Read more at: http://phys.org/news/2015-05-cosmic-evolution-galaxies.html#jCp

NASA Selects Advanced Space Technology Concepts for Further Study

NASA Selects Advanced Space Technology Concepts for Further Study                                                                                                       15-087a_nasa

This artist’s rendering depicts 2015 NIAC Phase I Fellow Mason Peck’s soft-robotic rover for planetary environments for missions that cannot be accomplished with conventional power systems. It resembles a squid, with tentacle-like structures that serve as electrodynamic ‘power scavengers’ to harvest power from locally changing magnetic fields. The goal is to enable amphibious exploration of gas-giant moons like Europa.

Credits: NASA/Cornell University/NSF                                                                                                                                                                                                                                                     NASA has selected 15 proposals for study under Phase I of the NASA Innovative Advanced Concepts (NIAC), a program that aims to turn science fiction into science fact through the development of pioneering technologies.The chosen proposals cover a wide range of inventive concepts, selected for their potential to transform future aerospace missions. Such transformational technology holds promise of accelerating NASA’s progress toward its goals of exploration beyond low-Earth orbit, and missions to an asteroid and Mars.

«The latest NIAC selections include a number of exciting concepts,» said Steve Jurczyk, associate administrator for the Space Technology Mission Directorate (STMD) at NASA Headquarters in Washington. «We are working with American innovators to reimagine the future of aerospace and focus our investments on concepts to address challenges of current interests both in space and here on Earth.»

NIAC Phase I awards are valued at approximately $100,000, providing awardees the funding needed to conduct a nine-month initial definition and analysis study of their concepts. If the basic feasibility studies are successful, awardees can apply for Phase II awards, valued up to $500,000 for two additional years of concept development.

«Most of the 2015 NIAC Phase I final candidates were outstanding, and choosing only 15 of them proved to be a challenge,» said Jason Derleth, NIAC program executive. «We look forward to seeing how each new study will push boundaries and explore new approaches — that’s what makes NIAC unique.»

One of the selected proposals calls for the use of a soft-robotic rover for missions that can’t be accomplished with conventional power systems. This rover would resemble an eel with a short antenna on its back that harvests power from locally changing magnetic fields. The goal is to enable amphibious exploration of gas-giant moons like Europa.

Another proposal will look at using two glider-like unmanned aerial vehicles connected by an ultra-strong cable at different altitudes that sail without propulsion. The vehicle would use wind shear in the lower stratosphere (approximately 60,000 ft.), similar to a kite surfer, where the upper aircraft provides lift and aerodynamic thrust, and the lower aircraft provides an upwind force to keep it from drifting downwind. If successful, this atmospheric satellite could remain in the stratosphere for years, enabling NASA’s Earth science missions, monitoring capabilities or aircraft navigation at a fraction of the cost of orbital satellite networks.

Employing a novel mobility concept, the Cryogenic Reservoir Inventory by Cost-Effective Kinetically Enhanced Technology (CRICKET) proposal explores volatiles, such as hydrogen, nitrogen and water, stored in permanently shadowed regions on planetary bodies. Inexpensive robotic crawlers, hoppers and soccer-ball style buckey-bots would explore the surface of these dark regions for water and other compounds. Multiple bots could be used to develop a high-resolution map to aid in potentially using these resources.

NASA solicits visionary, long-term concepts for technological development based on their potential value to future and current space missions. The projects are chosen through a peer-review process that evaluates their potential, technical approach and benefits that can be realized in a reasonable timeframe. All concepts are very early in the development cycle and represent multiple technology areas, including aircraft propulsion, human life support, science instruments, unique robotic concepts and exploring other diverse technology paths needed to meet NASA’s strategic goals.

NASA’s early investments and partnerships with forward-thinking scientists, engineers and citizen inventors from across the nation will provide technological dividends and help maintain America’s leadership in the global technology economy.

NIAC is part of NASA’s Space Technology Mission Directorate, which innovates, develops, tests and flies hardware for use in NASA’s future missions. During the next 18 months, the directorate will make significant new investments to address several high-priority challenges in achieving safe and affordable deep space exploration.

For a complete list of the selected proposals and more information about NIAC, visit:

http://www.nasa.gov/niac

For more information about NASA’s investments in space technology, visit:

http://www.nasa.gov/spacetech

Куда делись тысячи тонн Челябинского метеорита?

Куда делись тысячи тонн Челябинского метеорита?

15 февраля под Челябинском тысячи людей наблюдали полет необычно яркого болида. Его полет сопровождался сильными ударными волнами, напугавших жителей и вызвавших бой оконных стекол и разрушение ряда строений. По мнению ученых, это падение по силе воздействия на местность можно поставить на второе место после Тунгусской катастрофы 1908 г. Однако науке в данном случае крупно повезло. Если Тунгусский метеорит упал в глухом труднодоступном районе Сибири, практически без свидетелей взрыва, то здесь условия для фиксации события были почти идеальны — большое число свидетелей и разнообразных средств видеонаблюдения. Все это позволило хорошо воссоздать картину произошедшего события. Кроме того, в отличие от Тунгусской катастрофы, где не было найдено ни одного традиционного метеорита, здесь образцы метеоритов стали находить сразу после пролета болида. По оценке NASA, мощность выделившейся энергии в атмосферу при полете метеорита составила от 0,3 до 0,5 мегатонн тротила, что соответствует примерно мощности 20 атомных бомб, сброшенных на Хиросиму. Масса тела была в пределах 7000 — 10000 тонн, диаметр – 17 м, скорость 18 км/сек., яркая вспышка произошла на высотах 19 — 24 км. Российские ученые по мощности и массе тела дают несколько заниженные значения. Приведенные данные будут со временем уточняться. Метеорит оказался обычным хондритом, правда, довольно редкого типа. На сегодня, всего собрано несколько килограммов образцов, в основном сантиметровых размеров. Можно ожидать, что при сходе снежного покрова количество находок резко увеличиться. Однако уже сейчас ясно, что масса выпавшего вещества, по сравнению с первоначальной массой метеорита будет незначительной. Хондриты, по хорошо обоснованной гипотезе считаются осколками астероидов главного пояса, расположенного между орбитами Марса и Юпитера. Взаимные столкновения и удары комет (комета при столкновении с астероидом выбивает из него массу вещества в 20 раз превышающую массу кометы) приводят к появлению в межпланетном пространстве огромного количества осколков, один из которых, по-видимому, и стал Челябинским метеоритом. Кстати, в его образцах хорошо видны трещины, заполненные стеклом, что является следствием ударного процесса. Так куда же делись тысячи тонн метеоритного вещества? Попытаемся разобраться в этой проблеме. Из метеоритики хорошо известно, что вторгшееся в атмосферу космическое тело имеет гиперзвуковую скорость и будет подвергаться сильнейшей абляции – унос набегающим потоком расплава с ее поверхности. Одновременно с абляцией в действие вступает еще один, гораздо более интенсивный процесс, разрушающий метеорит – это т.н. вихри Гёртлера. Они возникают в пограничном слое набегающего потока вблизи неровностей и представляют собой бешено вращающиеся плазменные микросмерчи. Вихри буквально впиваются в поверхность метеорита и высверливают углубления на его поверхности (См. Рис. 1 и Рис.2), что, в свою очередь способствует массовому выбросу в стороны небольших фрагментов, которые быстро тормозятся в атмосфере и, если полностью не испарятся, то выпадут метеоритами на Землю вдоль траектории полета болида. Подобно голодной стае пираний, вихри Гёртлера набросились на метеорит и менее чем за 2 сек, буквально растерзали его тело. Имеющиеся представления о разрушении поверхности только от нагрева, не соответствуют действительности, т.к. из-за малой тепловодности каменного метеорита, он не успевает за секунды глубоко погреться, тем более что поверхностный слой интенсивно обновляется абляцией. where60_Куда_делись_тысячи_тонн_Челябинского_метеорита Рис.1. Железный метеорит. На его поверхности хорошо запечатлелись регмаглипты – застывшие следы воздействия вихрей Гёртлера. where61_Куда_делись_тысячи_тонн_Челябинского_метеорита Рис.2 Образцы метеорита Челябинск. Наблюдаемые на поверхностях углубления могут являться следами, оставленные вихрями Гёртлера. where62_Куда_делись_тысячи_тонн_Челябинского_метеорита Рис.3 Стоп-кадры полета болида На рис. 3 показан стоп-кадр полета болида. Хорошо видно, как меняется светимость болида вдоль траектории полета. В течение 1,7 сек она резко возрастает и затем сходит практически на нет, после чего лишь небольшие светящиеся обломки продолжили свой полет. Все картина указывает на то, что метеорит практически полностью «растаял» всего за 1,7 сек, полетев за это время 30 км. По-видимому, резкое увеличение светимости болида связано с появлением вихрей Гёртлера, благодаря чему поверхность свечения резко возросла, за счет выбросов с поверхности метеорита большого количества фрагментов. Если бы не возникли вихри Гёртлера, а действовала только абляция, то мы бы наблюдали полет ярко светящейся точки с небольшим хвостом, и не более того. Таким образом, благодаря наклонной траектории болида (14-200), выделение кинетической энергии метеорита в атмосфере произошло на высоте ~ 20 км , в течении ~2 сек и на участке траектории в 30 км, что способствовало рассеянию этой энергии в атмосфере и лишь незначительная ее часть в виде ударных волн достигла поверхности Земли. Кроме рассмотренных механизмов быстрого разрушения метеорита существует еще один вариант, т.н. механизм прогрессивного дробления метеорита, количественная оценка которого была разработана в 1976 г. академиком РАН С.С. Григоряном. Суть его идеи заключается в том, что при внедрении метеорита в плотные слои атмосферы в его теле, после достижения некоторого критического давления на лобовой поверхности, фронт разрушения начинает перемещаться, со скоростью звука в твердом теле, что приводит к взрывному разрушению метеорита и полному испарению его вещества. Если бы такой механизм действовал в теле Челябинского метеорита, то расчеты показывают, что он должен был одноразово разрушиться, за 0085 сек, чего не наблюдалось. Кстати, Тунгусский метеорит, благодаря своей массе в 1 млн. тонн и более крутой траектории полета (30-400) проник в нижние слои атмосферы, где взорвался на высоте 10 км. В случае если Челябинский болид также имел бы более крутую траекторию, то разрушение метеорита произошло значительно быстрее и закончилось существенно ближе к поверхности, что привело к выделению всей его кинетической энергии метеорита в ограниченном объеме атмосферы. Короче говоря, здесь мы имели практически полный аналог ядерного взрыва в 0,5 мт ТНТ со всеми его атрибутами воздействия на местность, за исключением радиации. Нельзя также исключить, что из-за резкого повышения аэродинамического давления на метеорит — а такой процесс подобен удару — то вполне возможно сработал бы механизм прогрессивного разрушения метеорита по Григоряну, что еще более усугубило ситуацию. Теперь посмотрим, во что превратился Челябинский метеорит. Как известно, полет болида сопровождался мощным шлейфом (См. Рис. 4), что, с учетом его больших угловых размеров и месторасположением на высоте 20 км, может указывать на его огромную массу. Другими словами мы наблюдаем протяженное газопылевое облако – след исправившегося вещества метеорита. Облачный вид шлейфу могли придать пары и частицы, как самого метеорита, так и окислы азота воздуха, которые неизменно образуются при высоких температурах. То, что метеорит во время интенсивного торможения не разделился на части, говорить о его высокой объемной прочности, т.е. в его теле не было крупных трещин, и он, по-видимому, представлял собой монолит. where63_Куда_делись_тысячи_тонн_Челябинского_метеорита Рис. 4. Свежий шлейф от пролета болида На Рис. 5 дана фотография шлейфа на заключительном этапе его рассеяния. На снимке отчетливо видно, что он стал темного цвета. Это указывает на то, что паровая фракция облака улетучилась, а остались, только микросферулы — застывшие капли расплава метеоритного вещества. Большие угловые размеры темного шлейфа так же указывает на его внушительную массу. Короче говоря, здесь наглядно представлено, во что, в конце концов, превратился Челябинский метеорит. where64_Куда_делись_тысячи_тонн_Челябинского_метеорита Рис. 5. Заключительная фаза рассеяния шлейфа Большой интерес для науки представляют находки метеоритов и определение зон выпадения на почву микросферул. Для сбора метеоритов наиболее благоприятное время — это конец схода снежного покрова. Когда толщина снега будет составлять несколько сантиметров, то темные метеориты будут хорошо видны на снегу, а на солнечных участках они будут лежать в снежных ямках, образовавшихся от теплового излучения нагретого метеорита, что еще более повысит вероятность их обнаружения. Особенно это явление будет проявляться вокруг метеоритов массой более 1 кг. Поисковикам нужно обязательно взять с собой хороший бинокль. Осмотр открытой местности лучше вести с возвышенностей или деревьев. Сбор метеоритов вести под траекторией полета болида. Может быть, со временем удаться получить суммарную массу выпавшего на землю метеоритного вещества. Для выявления зон рассеяния микросферул можно воспользоваться богатым опытом, накопленным исследователями Тунгусского метеорита. Характер выпадения челябинских метеоритов вселяет определенную надежду все же обнаружить осколки Тунгусской кометы. Дело в том, что движение Тунгусского тела, до достижения им высоты ~ 10 км происходило, по-видимому, по сценарию Челябинского метеорита. Далее, благодаря своей огромной массе (~1 млн. тонн) он сохранил высокую скорость, и когда на высоте ~10 км давление на его лобовой поверхности превысило критического давление, сработал механизм прогрессивного дробления и метеорит взорвался, что привело к полному испарению его вещества. Зная эти особенности полета Тунгусского тела, автор в своих работах неоднократно призывал полевых исследователей вести поиск выпавших объектов под траекторией полета болида. Однако, несмотря на то, что именно под траекторией полета вблизи эпицентра была обнаружена малая ударная воронка с целым набором космических частиц, его призыв так и остался не услышанным. В заключении нужно сказать, что местным жителям благодаря пологой траектории полета Челябинского болида, можно сказать, крупно повезло, и поэтому они просто обязаны отмечать каждый год дату 15 февраля, ни больше, ни меньше, как “День Метеорита” и благодарить судьбу за свое чудесное спасение от космической катастрофы. март 2013 | Евгений ДМИТРИЕВ

Озеро Смердячье. Болидная процессия кириллид — прообраз шатурского АПОКАЛИПСИСА

Озеро Смердячье. Болидная процессия кириллид — прообраз шатурского АПОКАЛИПСИСА

Дмитриев Евгений Валентинович

В Шатурском районе Московской области находится небольшое озеро со странным названием Смердячье. Такое название озеро получило не случайно – вблизи ее водной глади ранее чувствовался запах сероводорода. Есть и другие особенности озера. Оно имеет идеальные круговые очертания, внушительную глубину ~20м и окружено невысоким земляным валом.

Впервые на эти особенности озера в 1983 г. обратил внимание краевед Филин Николай Андреевич из г. Рошаль. Он, предположил, что оно образовалось в результате падения крупного метеорита. Он также обратил внимание на другие озера, расположенные практически на одной линии в юго-западном направлении. Тогда он сделал еще один вывод, что здесь имело место вторжение в атмосферу Земли крупного метеороида, который распался на отдельные фрагменты, выпавшие вдоль его траектории полета, в результате чего образовались озера Лемешево, Власово, Ярмолы, Черное-Бордуковское и Белое-Бордуковское.

К своим умозаключениям ему удалось привлечь внимание эстонских ученых Ю.В.Кестлане и К.Х.Мелла, и в 1985 году небольшая эстонская группа посетила озеро Смердячье. В результате проведенных исследований было высказано предположение, что озеро действительно может быть метеоритным кратером. В 2002 году на озере работала экспедиция Лаборатории Метеоритики ГЕОХИ РАН. Вот результаты ее работ: “Предварительное изучение собранных образцов показало, что в них присутствует расплавленный при ударе материал местных осадочных пород. Таким образом, можно предполагать, что озеро Смердячье действительно представляет собой кратер, образовавшийся при метеоритном ударе”. Согласно геологическим данным, кратер образовался уже после ледникового периода, то есть не более, чем 10 тысяч лет назад. Размер кратера — около 350 метров — позволяет предположить, что метеорит имел диаметр около 10-20 метров и массу 10 тысяч тонн. Энергия взрыва оценивается в 250 килотонн тротила.

Осенью 2007 года старший научный сотрудник петербуржского Всероссийского научно-исследовательского геологического института имени Карпинского С. Ю. Енгалычев провел обширные исследования кратера. В шурфах кратерного вала им были обнаружены стекловатые импактиты, а также деформации пластов, что позволило ему считать озеро Смердячье метеоритным кратером [1]. Он также как и Филин полагает, что и озера Лемешево и Власово образовались вследствие падения одного метеорита, разделившегося в атмосфере на три части.

Такое предположение встречается с непреодолимыми трудностями, связанными с полетом и разрушением космического объекта. Во-первых, трудно предположить, чтобы после разделения тела на три части, две из них получили боковое ускорение направленное исключительно к Земле. Здесь нужно понимать, что при высоких космических скоростях влиянием земного притяжения на изменение траектории полета можно пренебречь. Во-вторых, при высоких космических скоростях резкое боковое ускорение крупных разделившихся фрагментов должно приводить к их разрушению, причем сам процесс разделения должен сопровождаться мощным взрывом. Проводить какие либо расчеты пока не имеет смысла, так как нет данных по составу и механическим свойствам объекта. Если все же на каком-то участке траектории произошло простое механическое разделение тела на крупные фрагменты, то они будут и далее двигаться практически по одной траектории до столкновения с Землей.

Таким образом, космическая катастрофа в Шатурском районе все же имела место, весь вопрос в том, как она происходила. В свое время, анализируя вывод Э.П. Изоха о кометном происхождении Австрало-Азиатского пояса тектитов [2], автор пришел к выводу, что упавшая комета имела множественное ядро (подобие кометы Шумейкер-Леви-9). Ее фрагменты последовательно выпали вдоль дуги большого круга [3]. В Солнечной системе следы падения таких комет в виде цепочек кратеров обнаружены на Луне и спутниках планет-гигантов.

Но наиболее наглядным примером аналогичного события является пролет сквозь верхние слои атмосферы целого потока небесных тел 9 февраля 1913 г. в день святого Кирилла, получившего названием “болидная процессия Кириллид” (Рис. 1). Вот что писал о нем канадский астроном Ц. Хант: “Около 9 часов 05 минут вечера (9 февраля 1913 г. – день святого Кирилла, вставка автора) в северо-западной части неба вдруг появилось огненно-красное тело, быстро приближающее и растущее по величине; через некоторое время за ним показался длинный хвост. Струящийся хвост был такого же цвета, как голова, что создавало впечатление полета ракеты; но в отличие от ракеты тело не обнаруживало тяготения к Земле. Оно странным образом двигалось вперед по совершенно горизонтальной линии – величественно и неторопливо, продолжая идти по этому курсу без видимого спада к Земле, и, достигнув юго-восточного края, спокойно исчезло вдали. Едва прошло удивление, вызванное первым метеором, как в том же самом месте на северо-западе появились другие тела. Они двигались вперед таким же неторопливым шагом, попарно, по три и по четыре, с тянущими за ними хвостами, но не такими яркими, как в первом случае. И все они пересекли одну и ту же точку в юго-восточной части неба. После исчезновения этих тел во многих случаях был отчетливо слышан грохот, подобный отдаленному грому или шуму экипажа, проезжающего по неровной дороге или через мост. В некоторых случаях были отчетливо слышны три таких звука, следующих друг за другом с короткими интервалами. Большое число людей чувствовало сотрясение земли или дома. Полная продолжительность этого явления не была определена точно и составляла, по-видимому, 3,3 минуты” [9].

процессия_кириллид_Озеро_Смердячье
Рис. 1. Болидная процессия Кириллид 9 февраля 1913 года. Озеро Смердячье
процессия_кириллид_Озеро_Смердячье
Рис. 2. Так могла бы выглядеть процессия Кириллид в случае ее столкновения с Землей. Озеро Смердячье

Полет наблюдался в центральной части Канады в северо-восточной части неба, в общей сложности на высоте 50-70 км пролетело свыше 300 светящихся объектов, исчезновение которых сопровождалось грохочущим звуком. Вероятнее всего метеороиды были догоняющими, поэтому их скорость должна быть около 11 км/с.

Проведем анализ описания полета болидов. То, что метеороиды пролетели на высоте 50-70 км, не потеряв при этом скорости, указывает на их внушительную массу. Кроме того, чтобы наблюдатель даже с острым зрением мог назвать появившийся на небе объект на таких высотах телом, его размеры, как минимум, должны составлять несколько десятков метров, что соответствует метеороидам класса “Тунгуска”. И еще, пролет болидов сопровождался ударными волнами, воспринимаемыми свидетелями, как грохот, удары грома и отдельными взрывами. Учитывая большие расстояния прохождения ударных волн в разреженной атмосфере, их источники должны иметь внушительные размеры, чтобы генерировать ударные волны, способные достичь земли и восприниматься как взрывы и удары грома.

Озеро_Смердячье
Рис. 3. Возможно, по аналогичному сценарию (см. Рис. 2) произошло падение метеороидов в Шатурском районе ~10000 лет назад. Вид в плане. 1 – место находки шатурита №1, 2 – место находки шатурита №2, 3 – место взятия пробы грунта с микрошатуритами, 4 – проба грунта со стримергласами. Озеро Смердячье

Рис. 3. Возможно, по аналогичному сценарию (см. Рис. 2) произошло падение метеороидов в Шатурском районе ~10000 лет назад. Вид в плане. 1 – место находки шатурита №1, 2 – место находки шатурита №2, 3 – место взятия пробы грунта с микрошатуритами, 4 – проба грунта со стримергласами.

Для сравнения можно привести Челябинский метеорит, имеющий массу 10000 тонн и скорость 18 км/с. Пролетая на высоте 20 км он создал ударные волны, вызвавшие небольшие разрушения на земле и бой оконных стекол. Так что можно констатировать, что жителям территорий, над которыми прошла болидная процессия Килиллид, крупно повезло, что она прошла на очень большой высоте. Наиболее вероятным представляется, здесь имело место пролет кометных обломков, образовавшихся в результате распада ядра кометы, такие конструкции вообще свойственны кометам.

Теперь представим, что поток метеороидов прошел не по касательной, а столкнулся с Землей, вследствие чего метеороиды имели бы крутые траектории падения (см. Рис. 2). Если принять этот вариант для Шатурской катастрофы, то можно представить, как мог протекать процесс образования озер (Рис. 3). Выбор направления полета ударников обусловлен пока единственным соображением, связанный с увеличением высоты кратерного вала озера Смердячье в северо-восточном направлении, т.е. в этом направлении мог падать ударник.

Далее, в дополнение к ранее приведенным исследованиям кратера озера Смердячье в рамках традиционной метеоритики, проведем анализ события с позиций кометной метеоритики [4].

Первое, на что следует обратить внимание это последовательное расположение озер вдоль прямой линии. Этот факт может свидетельствовать, что здесь произошло падение фрагментов кометы, имеющей множественное ядро. Схожие характеристики озер Смердячье, Лемешево и Власовское позволяет полагать, что они образовались по единому сценарию, т.е. в результате импакта, что указывает на высокую прочность ударников, позволившим им достичь поверхности Земли не разрушившись в атмосфере. Происхождение более крупных и более мелких озер могло происходить по иному сценарию. В работе [7], был рассмотрен механизм разрушения в нижних слоях атмосферы менее прочных ударников, по типу Тунгусского метеорита, в результате чего вся его масса трансформируется в раскаленный поток аэрозоля, наполненный тугоплавкими фрагментами. Если траектория ударника крутая, то взрыв может произойти вблизи поверхности, при этом раскалённый поток аэрозоля с высокой скоростью обрушится на грунт и разметает его в стороны, что приведет к образованию мелкого кратера. Вполне возможно допустить, что озера Ярмолы, Черное-Бордуковское и Белое-Бордуковское произошли подобным образом.

Озеро_Смердячье
Рис. 4. а — образец шатурита №2, б – выделенные из него стримергласы. Озеро Смердячье

Рис. 4. а — образец шатурита №2, б – выделенные из него стримергласы.

Во-вторых, найденные Филиным два образца стекла, названные шатуритами, по ряду признаков их можно причислить к тектитам. Образец № 2 (Рис. 4) был исследован, по составу он хорошо вписался в классификацию кометных метеоритов [4] в подкласс H(Ca), как имеющий высокое содержание Ca. В дробленом материале этого образца были обнаружены стримергласы — скелетные останки внеземных примитивных морских животных [5], их в ряде случаев можно использовать в качестве кометных маркеров.

Озеро_Смердячье
Рис. 5. Микрошатуриты. Озеро Смердячье

Рис. 5. Микрошатуриты.

В третьих, в одной из проб грунта были обнаружены микрошатуриты (Рис. 5), того же тёмно-зелёного окраса, наблюдаемого в тонких срезах образцов шатуритов. Их морфология позволяет полагать, что они являются застывшими каплями расплава, образовавшимися при абляции шатуритов.

Озеро_Смердячье
Рис. 6. Стримергласы из пробы грунта. Озеро Смердячье

Рис. 6. Стримергласы из пробы грунта.

В другой пробе грунта (Рис. 6) наблюдались образования, очень схожие по внешним признакам со стримергласами.

С поиском стримергласов в грунтовых пробах района катастрофы вышел казус, сначала автор, а след за ним и Филин ошибочно приняли за стримергласы фитолиты – аморфные включения из диоксида кремния – встречающиеся у многих растений в листьях, междоузлиях и чешуях. По внешним признакам и по составу – чистый кремнезем – они мало отличаются от стримергласов морских губок, но вскоре ошибка была установлена, и автор извинился перед Филиным. К сожалению, катастрофный слой грунта, на который выпало кометное вещество, сейчас расположен на глубине 2 – 2,5 м., что затрудняет проводить исследования в рамках кометной метеоритики. Но отчаиваться не стоит, даже ручным буром этой глубины можно достичь за 15-20 мин., дальше предстоит скрупулезная работа по поиску в пробах катастрофного слоя грунта кометного вещества, которое может быть представлено микротектитами, самородными металлами [8], частицами известных кометных метеоритов [4] и кометными маркерами — стримергласами. Такие пробы грунта следует брать под всей траекторией полета болидов, особенно в зонах разлета вещества вокруг кратеров, а кометные метеориты искать в местах проведения земляных работ и естественного нарушения грунта (обнажения, промоины и т.п.).

К сожалению, объем исследований, проведенных в рамках кометной метеоритики ничтожно мал, чтобы делать уверенные выводы. Можно надеяться, что настоящая публикация привлечет серьезных исследований вплотную приступить к поиску и изучению кометного вещества, выпавшего 10000 лет назад в Шатурском районе Московской области.

Благодарность

Филину Н.А.: за предоставление образцов и проб грунта; за разнообразную информацию по району Шатурской катастрофы; за большой объем переписки; за обстоятельную информацию по собственным полевым исследованиям; за полезные советы и, несмотря на разный подход к проблеме, за благожелательное отношение к автору.

Литература

  1. Енгалычев С.Ю. Метеоритный кратер на востоке Московской области // Вестник Санкт-Петербургского университета. 2009. Сер. 7. Вып. 2. С. 3-11.
  2. Изох Э.П., Ле Дых Ан. Тектиты Вьетнама Гипотеза кометной транспортировки // Метеоритика, 1983, вып.42. с.158-169.
  3. Дмитриев Е.В. Появление тектитов на Земле // Природа. 1998. N 4. С. 17-25.
  4. Дмитриев Е.В. Кометные метеориты: падения, находки, классификация, стримергласы // Монография: Система < Планета Земля>. 300 лет со дня рождения М.В. Ломоносова. 1711 — 2011, М.: Книжный дом < ЛИБРОКОМ>, 2010, с. 170-189.
  5. Дмитриев Е.В. «Стримергласы, кометы и внеземная жизнь» // Система < Планета Земля>: Русский путь — Рублёв — Ломоносов — Гагарин. Монография. -М,: ЛЕНАНД, 2011, c. 166 — 171.
  6. Бронштэн В.А. Тунгусский метеорит и болиды Прерийной сети // Астрон. Вестник, 1976, т.10, № 2, с. 73-80.
  7. Дмитриев Е.В. Болидный поток раскаленного аэрозоля — новый поражающий фактор, сопровождающий падение кометного обломка // Околоземная астрономия -2007. Нальчик: Изд. М. и В. Котляровы, 2008, с. 100-104.
  8. Цельмович В.А. Частицы самородных металлов как возможные индикаторы вещества Тунгусского метеорита. Феномен Тунгуски: на перекрестке идей. Второе столетие изучения Тунгусского события 1908 г. — Новосибирск: ООО < Сити-пресс Бизнес>, 2012. — С. 105-108.
  9. Chant C., J., R / Astron/ Soc / Canada, 7, 145 (1913).

Комета 67P/Чурюмова-Герасименко: наступает момент истины

Комета 67P/Чурюмова-Герасименко: наступает момент истины

pic-120220150907091_комета
Комета 67P/Чурюмова-Герасименко

Ранее, 11 ноября, ИНТЕРФАКС-АВН сообщал, что российский исследователь Евгений Дмитриев по результатам многолетних исследований кометных метеоритов сделал вывод, что они выпали из комет, имеющих эруптивную природу происхождения. Все это позволило ему обозначить новое направление в науке под названием кометная метеоритика . Вот ее основные положения. 1. Кометы не являются остатками протопланетного облака и не содержат в себе реликтовое вещество Солнечной системы, а представляют собой фрагменты коры каменных ядер планет гигантов, выброшенных из их недр эруптивным процессом неизвестной природы. 2. Исследуя кометное вещество, мы изучаем породы коры кометоизвергающих небесных тел. 3. Вещество тугоплавкой составляющей кометных ядер в значительной мере дифференцировано, имеет сложный состав, схожий с составом земной коры. 4. Тектиты являются кометными фульгуритами, образовавшимися в теле кометного ядра от удара молний в процессе выброса комет из недр кометоизвегающих небесных тел. 5. Появление полей рассеяния тектитов на Земле происходило в результате атмосферных взрывов обломков кометных ядер, подобно взрыву Тунгусского метеорита. 6. В некоторых кометных метеоритах с высоким содержанием щелочных металлов наблюдаются скелетные останки внеземных примитивных морских животных, схожих по морфологии со спикулами губок, кораллами, радиоляриями позволяет полагать, что на кометоизвергающих телах ранее были (имеются) водные моря, насыщенные солями, в которых обитали (обитают) примитивные морские животные. 7. Кометы постоянно заносят жизнь на Землю и являются основными распространителями жизни во Вселенной. 8. Кометные ядра, как активные, так и погасшие, маскирующиеся под астероиды, являются главными виновниками космических катастроф Земли. Теперь с позиции кометной метеоритики можно попытаться дать объяснения некоторым данным, полученных с космических зондов «Розетта» и «Филы». 1. Так как комета 67Р/Чурюмова-Герасименко является короткопериодической кометой Юпитера, то и своим происхождением она обязана Юпитеру. 2. Комета представляет собой фрагмент коры каменного ядра планеты Юпитера. Столь необычную форму и пейзаж комета никак не могла получить в процессе аккумуляции вещества из протопланетного диска, так как в этом случае наращивание массы носит хаотичный характер и образовавшиеся тела должны иметь округлую форму. 3. Снимки поверхности кометы чем-то напоминают земные пейзажи: видны небольшие ровные, изогнутые и холмистые участки, скалы, рвы, утесы, валуны, хорошо просматриваются осадочные породы. Вот также мнение на этот счет К. Чурюмова: «Это очень красивый горный пейзаж. Он напоминает мне некоторые места в Карпатах. Возможно, Кавказские горы или Родопы. Словом, прекрасный земной горный массив, но не высокий. Здесь и долины, и кратеры, и многочисленные конусообразные пики — стометровые и выше, как иглы. Неизвестно, как они образовались, но напоминают сосульки. На Земле такое увидишь очень редко, только где-то в пещерах». Таким образом, внешний облик кометы хорошо коррелирует с фрагментом коры, вырванной из недр Юпитера. Видимо, такие пейзажи повсеместны на поверхности каменного ядра планеты. Не исключено, что здесь наблюдаются своды пещер со сталактитами или с застывшими натеками расплавленного вещества. 4. Малая плотность кометы – около 470 кг на кубический метр, указывает на наличие в ее теле множества пустот, происхождение которых можно объяснить мощной дегазацией легколетучих компонентов из фрагмента коры в процессе его выброса из глубинных горячих слоев атмосферы. Образно говоря, комета 67Р представляет собой крупнопористый огромный кусок шлака с включениями обломков различных пород. 5. Состав «душистых» газов, испускаемых кометой, адсорбированы кометными породами и льдом, вероятнее всего отображает ядовитую атмосферу глубинных слоев Юпитера. 6. Имеются серьёзные основания полагать, что типы пород, слагающих кометное ядро уже давно известны, их по составу можно будет обнаружить в классификации кометных метеоритов 7. Стороны некоторых скал засыпаны непонятными круглыми объектами, которые Х. Сиеркс, планетолог из института Макса Планка, назвал «яйцами динозавров». Они, по мнению ученого, могут представлять какую-то большую гальку, образовавшуюся из-за слипания кометного материала. Однако, согласно 4-му положению кометной метеоритики, они вероятнее всего являются тектитами, образовавшимися от ударов молний при выбросе кометы. Поэтому, на поверхности кометы следует еще поискать тектитовые киры – натечные образования тектитового расплава, обрамляющего входные отверстия молниепроводных каналов. 8. Если бы европейские ученые были знакомы с кометными метеоритами, то вряд ли произошли неполадки с посадкой на поверхность кометы зонда «филы» и трудности, возникшие при сверлении грунта. Дело в том, многие кометные метеориты имеют высокую прочность, их не только трудно разбить молотком, но даже разрезать «болгаркой». Видимо из таких пород был сложен выбранный для посадки и сверления грунт, находящийся под небольшим слоем кометной пыли. Если зонд «филы» не проснётся, то особой трагедии не случиться, так как уже существует довольно обширная коллекция первично изученных кометных метеоритов. На изучение такого же количества кометного вещества с помощью космических аппаратов потребуется несколько десятилетий и много млрд. долл. В течение многих лет автор пытался заинтересовать ученых кометными метеоритами, но никакого внимания к его работам проявлено не было, и вот сейчас наступает момент истины. Теперь у него появились два замечательных сподвижника – космический аппарат «Розетта» и зонд «Филы», и он надеется, что благодаря их беспристрастным исследованиям и кометной метеоритики, наконец, удастся похоронить гипотезу о реликтовом происхождении комет и возродить практически забытую эруптивную гипотезу. А пока тщетные попытки, предпринимаемые европейскими исследователями, втиснуть результаты исследований кометы 67/Р в прокрустово ложе реликтовой гипотезы выглядят в высшей степени неубедительными. Неизвестно сколько понадобится времени, чтобы ученые осознали, что видят перед собой не реликтовую комету, а фрагмент коры каменного ядра планеты Юпитер. Автор: Евгений Дмитриев