Астрономы университета Мэриленда Сильвия Protopapa и Дуглас Гамильтон авторы первой опубликованной работы о полете New Horizons, которая появилась 16 октября 2015 года в выпуске журнала Science. Protopapa помогла составить карту поверхности Плутона и найти на нем лед. Гамильтон помог рассчитать формы и размеры уникальных орбит, двух лун Плутона и последовал вывод, что никакие другие спутники не появляются на орбите Плутона. Результаты помогут ученым понять происхождение и последующую историю Плутона и его спутников.
Цветное изображение Плутона опубликованные в газете Наука полученные с космического аппарата показывает широкий диапазон цветов на поверхности Плутона, от темно красных на полюсах до более ярких на экваторе, синий в более высоких широтах. Сердце образная область прерывает эту картину, отображая разные цвета на западе и востоке.
«На основе земных данных мы знали, что поверхность Плутона весьма не однородна. Однако, я была поражена, увидев такую впечатляющую разноцветную поверхность и геологическое разнообразие,» сказала Protopapa. В предыдущей работе, Protopapa использовала наземные спектроскопические измерения и сложное моделирование для определения состава поверхности Плутона и одиного из его спутников, Харона. Она также провела лабораторные эксперименты, чтобы установить спектральное поведение смесей, содержащих различные соотношения метана и азота при различных температурах, которые помогут ей интерпретировать данные Новых горизонтов.
Для изучения ли разнообразие цветов Плутона благодаря своему составу, Protopapa и ее коллеги проанализировали данные инфракрасно спектрального тепловизора Array (Leisa). Leisa предназначен для отображения состава поверхности Плутона и его спутников. Метана, оксида углерода, азота и льда, в том числе органических соединений, поглощающие свет на различной длине инфракрасных волн. что позволяет обнаружить нужные соединения. Команда ученых сообщает о значительном различии в летучих льдах на поверхности Плутона. Западный район в форме сердца содержит замороженный метан и монооксид углерода, в то время как темно-красные экваториальные области, содержат очень мало летучего льда.
Данные Leisa выпущенные НАСА, но не включенные в научную работу показывает многочисленные мелкие открытые участки водяного льда в красных областях цветных изображений, принятых MVIC. Эти данные являются четкими доказательствами о наличии водяного льда на Плутоне.
Красный цвет на поверхности указывает на присутствие органических соединений, называемых tholins, которые являются результатом энергичного облучения метана, азота и монооксида углерода. Тем не менее, Protopapa и ее коллеги еще не понимают, соотношения между льдом и водой tholins на поверхности Плутона. Команда также планирует сравнить миссии New Horizons с данными наземных измерений Плутона, чтобы получить более полное представление о сложных механизмах, которые формируют поверхность Плутона.
Плутон не один на своей поверхности имеет лед, два из пяти его спутников Никс и Гидра также покрыты льдом. Тем не менее, яркие поверхности двух спутников удивили астрономов, поскольку различные внешние процессы должны были затемнить поверхность этих спутников в течение долгого времени.
Со́лнце (астр. ☉) — единственная звезда Солнечной системы. Вокруг Солнца обращаются другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеориты, кометы и космическая пыль. Масса Солнца составляет 99,866 % от суммарной массы всей Солнечной системы[7]. Солнечное излучение поддерживает жизнь на Земле[8] (свет необходим для начальных стадий фотосинт еза), определяет климат. Солнце состоит из водорода (≈73 % от массы и ≈92 % от объёма), гелия (≈25 % от массы и ≈7 % от объёма[9]) и других элементов с меньшей концентрацией: железа, никеля, кислорода, азота, кремния, серы, магния, углерода, неона, кальция и хром а[10]. На 1 млн атомов водорода приходится 98 000 атомов гелия, 851 атом кислорода, 398 атомов углерода, 123 атома неона, 100 атомов азота, 47 атомов железа, 38 атомов магния, 35 атомов кремния, 16 атомов серы, 4 атома аргона, 3 атома алюминия, по 2 атома никеля, натрия и кальция, а также малое количество прочих элементов. Средняя плотность Солнца составляет 1,4 г/см ³. По спектральной классификации Солнце относится к типу G2V («жёлтый карлик»). Температура поверхности Солнца достигает 6000 К. Поэтому Солнце светит почти белым светом, но прямой свет Солнца у поверхности нашей планеты приобретает некоторый жёлтый оттенок из-за более сильного рассеяния и поглощения коротковолновой части спектра атмосферой Земли (при ясном небе, вместе с голубым рассеянным светом от неба, солнечный свет вновь даёт белое освещение). Солнечный спектр содержит линии ионизированных и нейтральных металлов, а также водорода и гелия. В нашей галактике Млечный Путь насчитывается свыше 100 миллиардов звёзд[11]. При этом 85 % звёзд нашей галактики — это звёзды, менее яркие, чем Солнце (в большинстве своём красные карлики). Как и все звёзды главной последовательности, Солнце вырабатывает энергию путём термоядерного синтеза. В случае Солнца подавляющая часть энергии вырабатывается при синтезе гелия из водорода. Удалённость Солнца от Земли, 149 миллионов 600 тысяч километров, приблизительно равна астрономической единице, а видимый угловой диаметр при наблюдении с Земли, как и у Луны, — чуть больше полградуса (31—32 минуты). Солнце находится на расстоянии около 26 000 световых лет от центра Млечного Пути и вращается вокруг него, делая один оборот более чем за 200 миллионов лет[12]. Орбитальная скорость Солнца равна 217 км/с — таким образом, оно проходит один световой год за 1400 земных лет, а одну астрономическую единицу — за 8 земных суток[13]. В настоящее время Солнце находится во внутреннем крае рукава Ориона нашей Галактики, между рукавом Персея и рукавом Стрельца, в так называемом «Местном межзвёздном облаке» — области повышенной плотности, расположенной, в свою очередь, в имеющем меньшую плотность «Местном пузыре» — зоне рассеянного высокотемпературного межзвёздного газа. Из звёзд, принадлежащих 50 самым близким звёздным системам в пределах 17 световых лет, известным в настоящее время, Солнце является четвёртой по яркости звездой (его абсолютная звёздная величина +4,83m). источник: ВикипедиЯ
Ether compounds could work like DNA on oily worlds
In the search for life beyond Earth, scientists have justifiably focused on water because all biology as we know it requires this fluid. A wild card, however, is whether alternative liquids can also suffice as life-enablers. For example, Saturn’s frigid moon Titan is awash in inky seas of the hydrocarbon methane.
Here on warm, watery Earth, the molecules DNA and RNA serve as the blueprints of life, containing creatures’ genetic instruction manuals. An immense family of proteins carries out these instructions.
Yet in a hydrocarbon medium on Titan, these molecules could never perform their profound chemical duties. Other molecules must therefore step up to the plate if non-water-based, alien life is to operate and evolve in a Darwinian sense, with genetic changes leading to diversity and complexity.
A new study proposes that molecules called ethers, not used in any genetic molecules on Earth, could fulfill the role of DNA and RNA on worlds with hydrocarbon oceans. These worlds must be a good deal toastier though than Titan, the study found, for plausibly life-like chemistry to take place.
«The genetic molecules we have proposed could perform on ‘warm Titans’,» said paper lead author Steven Benner, a distinguished fellow at the Foundation for Applied Molecular Evolution, a private scientific research organization based in Alachua, Florida.
Bigger molecular cousins to Titan’s methane, such as the octane that helps fuel our vehicles, would also make for far more suitable solvents. Although no «warm Titans» close-in to their host stars have turned up so far in exoplanet exploration, Benner is hopeful there are worlds aplenty that fit the bill.
«Within our own solar system, we do not have a planet big enough, close enough to the Sun, and with the right temperature to support warm hydrocarbon oceans on its surface,» said Benner. «But each week, astronomers are discovering new solar systems other than our own.
» The new paper appeared in the March issue of the journal Astrobiology and was funded in part by the Exobiology & Evolutionary Biology element of the NASA Astrobiology Program.
A molecular sketch of life on Earth
On a fundamental level, the development of life on Earth has been a push-and-pull between molecules changing and staying the same. For an organism to reproduce and make copies of itself, the vast majority of its genetic information must be conserved if the offspring are to survive and still carry life forward. But if life does not change and adapt to inconstant environmental conditions, it will die out. The environmental curve balls to life include temperature swings and varying water and nutrient availability.
DNA and RNA allow for a biological version of the axiom «the more things change, the more they stay the same.» Individual «letters,» or nucleobases, in the four-letter code of DNA and RNA can mutate without destroying the molecule’s overall form and function.
These nucleobase changes can produce novel proteins. These proteins in turn let life chemically interact with its environment in new ways to promote survival. Brand new species arise in this manner, as fresh traits take hold in contrasting conditions and locations. (In the mid-1800s, Charles Darwin famously intuited this overarching concept of the origin of species, though the biomolecular nitty-gritty was not fathomed until many decades hence.)
The general structure, and therefore the general behavior, of DNA and RNA remains the same because of repeating elements in the chemical’s backbone, or main scaffolding. The molecules possess an outwardly negative charge that repeat along their backbones, which allows DNA and RNA to dissolve and float freely in water. In this fluid medium, the DNA and RNA can interact with other biomolecules, leading to complexity in biological systems.
«This is the central point of the ‘polyelectrolyte theory of gene,’ which holds that any genetic biopolymer able to support Darwinian evolution operating in water must have an ever-repeating backbone charge,» explained Benner. «The repeating charges so dominate the physical behavior of the genetic molecule that any changes in the nucleobases that influence genetic information have essentially no significant impact on the molecule’s overall physical properties.
» All of which is well and good for us water-based organisms. The trouble is, for waterless worlds like Titan where hydrocarbons reign, molecules like DNA and RNA would never cut it. These biomolecules cannot dissolve, as required, in hydrocarbons to allow for life’s microscopic bump-and-grind.
«None of these molecules have any chance of dissolving in a hydrocarbon ocean like on Titan or on a warm Titan,» said Benner.
More bothersome still, molecules with any sort of outward charge goop up in hydrocarbons. The blueprints of life on Earth as contained in DNA and RNA cannot translate to hydrocarbon-logged worlds.
Enter the ether
Is life, at least as we can conceive of it, impossible amidst hydrocarbons? Benner and colleagues think not. Compounds called ethers, when strung together form complex «polyethers,» can likely perform in a manner that stays faithful to the polyelectrolyte theory of gene.
Ethers, like DNA and DNA, have simple, repeating backbones, in their case of carbon and oxygen. Structurally, ethers do not have an outward charge, like DNA and RNA. But ethers do possess internal charge repulsions that open up useful «spaces» within the molecules, wherein small elemental chunks can go that work like the DNA’s and RNA’s nucleobases.
Following from this insight, Benner and colleagues tested out how well polyethers would dissolve in various hydrocarbons. The researchers further ran experiments at temperatures expected of Titan-esque worlds at different distances from host stars.
Hydrocarbons, like water, can be solids liquids or gases, depending on temperature and pressure. As with the astrobiological hunts for water-based life, the liquid phase of hydrocarbons is the one of interest, because in solids (like ice), biomolecules cannot interact, and in gases (water vapor), the medium is too thin to support enough interaction.
As a rule, the temperature range at which a hydrocarbon is a liquid goes up as the hydrocarbon becomes longer. Methane, the simplest, shortest hydrocarbon with a single carbon atom linked to four hydrogen atoms, has a very narrow liquid range—between about -300 and -280 degrees Fahrenheit. Inconveniently, the solubility of ethers plummets when getting down into these Titanian chills.
According to Benner’s study, and to the disappointment of many scientists, Titan looks like a very unlikely abode for aliens. «We have shown that the methane oceans at Titan are likely to be too cold to hold any genetic biopolymer,» said Benner. (Puzzling readings of less hydrogen and acetylene than expected at Titan’s surface have, however, hinted previously at a form of microbial life.)
Degrees of degrees
A better bet for life than methane-ocean worlds are those instead covered by propane. This hydrocarbon has three carbon atoms to methane’s one, and is another household name here on Earth as a gaseous fuel. It can stay liquid over a much broader and more suitable-for-chemistry range of -300 to -40 degrees Fahrenheit.
Still better than propane is octane. This eight-carbon molecule does not freeze until about -70 degrees Fahrenheit, nor does it turn into a gas until reaching a quite-hot 257 degrees Fahrenheit. That broad a range with sufficient ether solubility suggests that warm Titans could harbor a truly alien biochemistry capable of evolving complexity in a Darwinian manner. These worlds could be found in a fairly wide hydrocarbon «habitable zone» around other stars. The hydrocarbon habitable zone is akin to the familiar water-based zone, wherein a planet is neither too close nor too far from its star to have its water completely boil or freeze away.
Hydrocarbon worlds of interest need not be Titan-like, after all, in that they do not have to be moons of gas giants. Warm Titans could actually be more like oily Earths or super-Earths, drenched in octane. As research continues, new and exotic solvents other than water and hydrocarbons could yet emerge as plausible milieus for life’s dealings. «Virtually every star has a habitable zone for every solvent,» said Benner.